845 Lyapunov ’ S Stability of Large Matrices by Projection Methods

نویسندگان

  • A. N. MALYSHEV
  • M. SADKANE
چکیده

This paper presents some practical and guaranteed ways of studying the discrete-time/ continuous-time stability quality of large sparse matrices. The methods use projection techniques for computing an invariant subspace associated with a few outermost eigenvalues (those with largest real parts for the continuous-time case and with largest magnitudes in the discrete-time case). Standard Lyapunov's stability techniques are then used on this latter subspace. Conclusion about instability of the original matrix is drawn from the instability of the small projected matrix. Stability is estimated by means of a quadratic Lyapunov functions composed from the Lyapunov function associated with the projected matrix and some a priori given Lyapunov functions associated with the eld of values of the restriction of the original matrix on the orthogonal complement of the invariant subspace. Stabilit e au sens de Lyapunov de grandes matrices par les m ethodes de projection R esum e : Nous pr esentons quelques m ethodes pour l' etude de la qualit e de la stabilit e discr ete et continue de grandes matrices. Ces m ethodes sont bas ees sur la construction, via des m ethodes de projection, d'un sous espace invariant correspon-dant aux valeurs propres de plus grandes parties r eelles dans le cas discret et de plus grands modules dans le cas continu, sur lequel la stabilit e classique au sense de Lyapunov est etudi e. Ces derni eres informations nous permettent de conclure sur l'instabilit e de la matrice de d epart a partir de l'instabilit e de la matrice projet ee. La stabilit e est d eduite a partir des fonctions quadratiques de Lyapunov associ ees a la matrice projet ee et de quelques fonctions de Lyapunov, donn ees a priori, et asso-ci ees au champ de valeurs de la restriction de la matrice d'origine sur le compl ement orthogonal du sous espace invariant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

Studying Transition Behavior of Neutron Point Kinetics Equations Using the Lyapunov Exponent Method

The neutron density is one of the most important dynamical parameters in a reactor. It is directly related to the control and stability of the reactor power. Any change in applied reactivity and some of dynamical parameters in the reactor causes a change in the neutron density. Lyapunov exponent method is a powerful tool for investigating the range of stability and the transient behavior of the...

متن کامل

Global Stabilization of Attitude Dynamics: SDRE-based Control Laws

The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

A Rational Krylov Iteration for Optimal H2 Model Reduction

In the sequel, we will construct the reduced order models Gr(s) through Krylov projection methods. Toward this end, we construct matrices V ∈ R and Z ∈ R that span certain Krylov subspaces with the property that Z V = Ir. The reduced order model Gr(s) will then be obtained as Ar = Z T AV, Br = Z T B, and Cr = CV. (2) The corresponding oblique projection is given by V Z . Many researchers have w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994